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Abstract  16 

Ocean management involves monitoring data that are used in biological models, where estimates 17 

inform policy choices.  However, few science organizations publish results from a recurring, 18 

quantitative process to optimize effort spent measuring fish age.  We propose that science 19 

organizations could predict the likely consequences of changing age-reading effort using four 20 

independent and species-specific analyses.  Specifically it predicts the impact of changing age 21 

collections on the variance of expanded age-composition data (“input sample size,” Analysis #1), 22 

likely changes in the variance of residuals relative to stock-assessment age-composition estimates 23 

(“effective sample size,” Analysis #2), subsequent changes in the variance of stock-status 24 

estimates (Analysis #3), and likely impacts on management performance (Analysis #4).  We 25 

propose a bootstrap estimator to conduct Analysis #1, and derive a novel analytic estimator for 26 

Analysis #2 when age-composition data are weighted using a Dirichlet-multinomial likelihood.  27 

We then provide two simulation studies to evaluate these proposed estimators, and show that the 28 

bootstrap estimator for Analysis #1 underestimates the likely benefit of increased age reads while 29 

the analytic estimator for Analysis #2 is unbiased given a plausible mechanism for model mis-30 

specification.  We conclude by proposing a formal process to evaluate changes in survey efforts 31 

for stock assessment.  32 
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Introduction 34 

Fisheries managers in the United States, Europe, and worldwide use stock assessment models 35 

to inform fishery regulations (Methot, 2009). Age and length data are provided to stock 36 

assessments through either fishery-independent (surveys) or fishery-dependent sources (fisheries). 37 

In modern integrated assessment models (Maunder, 2003), these age and length data inform 38 

estimates of abundance-at-age in conjunction with abundance-index, fishery catch, and other 39 

sources of information.  However, collecting and interpreting information about population length- 40 

and age-structure for use in fisheries management is a complex enterprise and requires 41 

collaboration from teams that (at a minimum) conduct field samples, subsample these to record 42 

age and length, expand resulting records to account for subsampling designs, weight these data in 43 

conjunction with other data sources, and use resulting estimates to inform management changes.  44 

Data on age and length are obtained with the expectation that larger sample sizes will lead to lower 45 

variances for estimates of stock status from stock assessment models. This scientific enterprise is 46 

expensive to develop and maintain, and there are ongoing demands to quantify the amount of effort 47 

expended at each stage and for different species.   48 

Fisheries scientists and managers must balance many competing demands for limited scientific 49 

resources which consequently determine the magnitude of age and length sampling. Surveys of 50 

fish populations often target and record information for multiple species and follow a pre-51 

established sampling design from year to year.  This design typically involves a process to select 52 

locations and times to collect samples over a fixed spatial domain, and also some process to 53 

subsample fishes in each sample for which biological data (age, length, weight) are measured.  The 54 

design for sampling locations is often fixed over time; although there is more room to change the 55 

design for subsampling biological data, these subsampling designs are also often relatively 56 
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consistent over time.  By contrast, the importance of sampling data for each individual fish species 57 

often changes dramatically over time, either as species approach biological reference points (e.g., 58 

trigger rebuilding plans) or when the relative abundance of species changes in a given region.  59 

However, there is relatively little research regarding how to quantify the impact of changing 60 

age/length subsampling on the precision of stock assessments, and this limits the ability to 61 

objectively optimize age/length subsampling strategies. 62 

We identify two broad approaches to fitting age and length information in stock-assessment 63 

models: a multinomial likelihood (or similar methods) for data representing proportion at age or 64 

length, e.g., in Stock Synthesis (Methot and Wetzel, 2013); or a multivariate normal likelihood for 65 

abundance-indices for each age, e.g., in SAM (Nielsen and Berg, 2014).  Several methods have 66 

been suggested to account for non-independence of age and length subsamples within a given 67 

sampling unit (or haul) when using a multinomial likelihood. These methods can generically be 68 

categorized as follows:   69 

1. ad hoc methods for setting input sample size, for example, one fish per haul (Pennington et al., 70 

2002);  71 

2. using sampling or model-based estimators to measure the degree of independence in available 72 

data (Stewart and Hamel, 2014; Thorson, 2014; Thorson and Haltuch, 2018);  73 

3. iteratively estimating effective sample size of age/length composition based residual fits to an 74 

assessment model (McAllister and Ianelli, 1997; Francis, 2011); and  75 

4. estimating effective sample size within an extension of the multinomial distribution that permit 76 

such estimation, for example, using the Dirichlet-multinomial likelihood (Thorson et al., 77 

2017).  78 



5 

 

Alternatively, stock assessments using multivariate normal likelihood for abundance-at-age can 79 

quantify the covariance resulting from correlations among observations, similar to #2 above (Berg 80 

et al., 2014), and/or the covariance in residual fits to the assessment by using a flexible 81 

specification of the likelihood, similar to #4 above (Berg and Nielsen, 2016).   82 

In the following, we distinguish three potential “sample sizes” that define the information 83 

available in age and length composition data: 84 

1. Nominal sample size (𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟):  The number of raw ages or lengths that are measured, either in 85 

the field (for lengths) or the laboratory (for otoliths, vertebrae, spines, or other hard parts that 86 

are informative about age). 87 

2. Input sample size (𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖):  The specified sample size for expanded age or length compositions, 88 

when fitting these as if they follow a multinomial distribution. 89 

3. Effective sample size (𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟):  The sample size that results from reweighting the age or 90 

length composition data based on their fit within a stock assessment model. 91 

These sample sizes are often measured explicitly when using a multinomial likelihood for 92 

composition data (Methot and Wetzel, 2013), and they could be approximated when using a 93 

multivariate normal likelihood for abundance-indices-at-age in other assessment models (Berg et 94 

al., 2014).   95 

Nominal, input, and effective sample size will often differ for a given stock.  For example, the 96 

U.S. West Coast bottom trawl survey for canary rockfish measured lengths for 562 individuals in 97 

43 survey tows each year on average from 2003-2010 (i.e., 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≈ 562), but a sample-based 98 

calculation yields a much lower input sample size (𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 79) as reported by Stewart and Hamel 99 

(2014).  The most recent full assessment for this stock (Thorson and Wetzel, 2015) then used the 100 

Francis (2011) method for calculating effective sample size, which resulted in a yet lower sample 101 
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size (𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 = 9.1 ), although the alternative Ianelli-McAllister reweighting would have 102 

resulted in a small reduction from input to effective sample size (𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 = 75.4).  It is widely 103 

accepted that weighting age/length composition data by nominal sample size within a multinomial 104 

likelihood is problematic (Hulson et al., 2011; Francis, 2017), although research is ongoing 105 

regarding optimal methods to calculate effective sample size (e.g., Xu et al., 2019b).   106 

Despite the importance of age and length data within statistical catch-at-age models, there has 107 

been little research regarding how stock-assessment results change with changes in age and length 108 

sampling effort.  One exception is Zimmermann and Enberg (2017), which explored the impact of 109 

reduced survey frequency (including age and length subsamples) on assessment results for two 110 

Northeast Atlantic stocks.  This study showed that reduced sampling frequency increased 111 

confidence interval widths, but did not specifically explore changes in age-reading effort or 112 

provide any theory for predicting changes in assessment results given changes in age subsampling.  113 

This dearth of research is surprising given that age-structured assessments are the gold-standard 114 

for stock assessment, are widely used worldwide, and remain resource-intensive due to the need 115 

to collect and read age data.   116 

The lack of published research regarding changes in assessment model results given changes 117 

in age subsampling effort likely arises due to the complexity of the topic.  We hypothesize that an 118 

increase in the number of subsampled ageing structures will result in a less-than-proportional 119 

increase in the input-sample sizes that represent the variances of the resulting measurement of age-120 

composition, e.g., see argument in Lai (1987).  The function relating age reads and input sample 121 

size is likely nonlinear because it depends not just on the number of age reads (the input sample 122 

size), but also upon the correlation between ages read in a single tow, the evenness of catch-rates 123 

between tows, and other factors (Stewart and Hamel, 2014).  Similarly, the impact of increasing 124 
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input-sample size on stock assessment results is likely to be nonlinear because age-composition 125 

data are typically “down-weighted” to account for model mis-specification and the non-126 

independence among samples (Francis, 2011), and previous research has not explored how data 127 

weighting might affect the benefits of increased age subsampling effort.  The net effect of these 128 

two nonlinear functions is difficult to predict; it presumably could be predicted by simulating or 129 

randomly re-sampling field-sampling data, and then exploring likely consequences on subsequent 130 

stock-assessment modelling.  However, such simulation experiments are difficult to condition 131 

upon the specifics of field-sampling data for a given stock (i.e., the degree of variance in age-132 

samplings among or within tows) or its subsequent stock assessment (i.e., the degree of down-133 

weighting). 134 

In this study, we therefore propose and evaluate the performance of two new estimators, 135 

predicting the likely increase in effective sample size resulting from an increase in age-reading 136 

effort.  To do so, we first decompose the problem into four separate analyses, and propose new 137 

estimators for the first two that, respectively, predict resulting changes in input and effective 138 

sampling size.  We then use two simulation experiments to test the accuracy of these two proposed 139 

estimators;  these experiments show that we can predict a lower bound for the impact of changing 140 

age sampling size on input sample size, and can accurately predict the impact of changing input 141 

sample size on effective sample size.  We conclude by discussing how these results can be used in 142 

future studies to optimize the allocation of limited age-reading effort across multiple species within 143 

a multispecies sampling design.   144 

Methods 145 
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We develop an approach to predict how management performance would change when re-146 

allocating resources involved with collecting age and length subsampling data.  Specifically, we 147 

show that this problem can be decomposed into four separate analyses to approximate the pipeline 148 

from field-sampling to data preparation to management performance.  When using a multinomial 149 

likelihood for age and length proportions, these analyses are as follows: 150 

Analysis #1. Predict impact of changing nominal age/length sample size on the input sample size 151 

of expanded age/length composition data;  152 

Analysis #2. Predict impact of changing input sample size for age/length composition data on 153 

the effective sample size when these data are weighted in an assessment model to account for 154 

model mis-specification; and 155 

Analysis #3. Predict impact of changing effective sample size on the variance of stock-156 

assessment outputs. 157 

Analysis #4. Predict impact of changing variance for stock-assessment outputs on management 158 

performance. 159 

Notation and further description of these four analyses are presented in Table 1. We address 160 

Analysis 1-2 in this study and recommend further research regarding Analysis 3; we note that 161 

Analysis 4 has been thoroughly studied elsewhere by a series of papers on this topic (Shertzer and 162 

Prager, 2007; Wiedenmann et al., 2015; Punt et al., 2016).  For Analysis 1-2, we explain the theory 163 

allowing us to identify the sensitivity to changing nominal and input sample size, and also validate 164 

this theory using a simple simulation experiment.  These estimators are designed for a stock 165 

assessment using a multinomial likelihood.  We suspect that Analysis #1 could be adapted to 166 

measure changes in the estimation covariance in abundance-indices at age (e.g., Berg et al., 2014) 167 

arising from changing sampling effort, while Analysis #2 could similarly be adapted to predict 168 
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likely changes in covariance in residuals when fitting indices-at-age within an assessment model 169 

(Berg and Nielsen, 2016).  However, we do not discuss further in this paper how to adapt analyses 170 

for use in a multivariate normal approach.   171 

Analysis #1:  Predicting changes in input sample size  172 

We first conduct a replicated simulation experiment and apply a new bootstrap estimator for 173 

predicting how input sample size will be affected by a change in the nominal sample size for 174 

age/length subsamples (see Fig. 1 for visualization of simulation design).  To do so, we measure 175 

input sample sizes using the Stewart and Hamel (2014) method; see Appendix A for a detailed 176 

explanation.  Future analyses could use alternative method for calculating input sample size 177 

(Thorson, 2014; Thorson and Haltuch, 2018), although we do not explore the topic further here.  178 

In the following we apply the Stewart-Hamel method to data collected using a simple random 179 

sampling design for ages in each tow.  The algorithm could be applied to length-stratified age 180 

samples, the use of an age-length key, or other complicated circumstances via proper bootstrapping 181 

and expansion of samples, although we do not explore these topics further here.  182 

We apply the Stewart-Hamel method for calculating input sample size to data generated by a 183 

simple operating model.  We define parameters for this operating model by fitting a multivariate 184 

spatio-temporal model to abundance-at-age for walleye pollock in the eastern Bering Sea, for each 185 

of ages 1-8 (where “age 8” is as a plus-group for all ages 8+) from ten years of data, 2009-2018.  186 

This multivariate model does not explicitly estimate any covariance in spatial or spatio-temporal 187 

components between ages, although predicted densities will be correlated among ages for some 188 

data sets; this is the default “index standardization” settings for package VAST (Thorson, 2019a), 189 

as demonstrated by Thorson and Haltuch (2018).   190 
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For each replicate of this simulation experiment we specifically apply the following steps: 191 

Step 1. We simulate new data conditional on the estimated fixed and random effects from the 192 

operating model.  This involves sampling the total abundance for each of approximately 360 193 

bottom trawl samples conducted in each year.  We also simulate samples of age for a random 194 

subsample of individual fish from each tow, where the size of the subsample is 20 individual 195 

fish per tow.  We apply the Stewart-Hamel method to determine the 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) for each year 196 

and record these values.   197 

Step 2. Given the simulated data set from Step 1, we then apply a bootstrap estimator to predict 198 

the sample size that would have occurred if we had instead subsampled 40 individual fish per 199 

tow.  This estimator is described below, and result in prediction 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) for the input sample 200 

size that would result from increasing subsampling effort in each year and simulation replicate. 201 

Step 3. Using the same operating model as in Step 1, we then take a subsample of 40 individual 202 

fish per tow, apply the Stewart-Hamel estimator, and record this as the true sample size 203 

𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) resulting from increased sampling effort. 204 

Step 4. We replicate steps 1-3 multiple times, and compare 𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) with 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) for each 205 

replicate and year. 206 

We apply a “bootstrap” estimator in Step 2.  This estimator applies the Stewart-Hamel estimator 207 

to a list of age/length records and associated data for each tow.  However, when bootstrapping the 208 

set of age/length measurements, it samples 40 individual fish (instead of the original sample size 209 

of 20) with replacement from the 20 measured fish.  On first inspection, an analyst might assume 210 

that doubling the number of age/length measurements will result in a doubling of input sample 211 

size, so we also compare the bootstrap estimator 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) with this naïve approach. 212 
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We hypothesize that doubling the number of ages will result in a less-than-proportional 213 

increase (i.e., 𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)/𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) < 2).  This is because the variance in compositions among 214 

samples (which determines the value of 𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) ) arises both from imprecision when 215 

subsampling ages within each tow (which decreases with increasing age samples), but also from 216 

variance in age-composition among tows (which is less sensitive to increasing age samples).  The 217 

bootstrap estimator is inspired by statistical theory and other analyses using resampling to predict 218 

the likely change in variance resulting from changing sample sizes (Anderson and Santana‐Garcon, 219 

2015).  However, this particular use for bootstrap to predict a likely change in variance has not 220 

been simulation-tested before, and hence we have no prediction of its performance a priori.  Future 221 

studies could explore alternative changes in sampling design (i.e., increasing the total number of 222 

trawl tows), or changes in the estimation model used to expand age and length-composition data 223 

(e.g., Thorson and Haltuch, 2018); we leave both as topics for future research.   224 

Analysis #2:  Predicting changes in effective sample size 225 

We start Analysis #2 with the input-sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) for each year 𝑡𝑡 of a given data set, and 226 

the new input-sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) under a proposed change to age/length subsampling effort, 227 

where the latter would be obtained using an estimator in Analysis #1.  We seek to understand how 228 

changes in input-sample size affects the expected effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ (𝑡𝑡) when fitting 229 

these data in a stock-assessment model. The following derivation applies generically to a variety 230 

of approaches for data-weighting, but we use terminology for the Dirichlet-multinomial approach 231 

(Thorson et al., 2017).   232 

The Dirichlet-multinomial approach replaces a multinomial likelihood with an alternative 233 

Dirichlet-multinomial likelihood involving an additional  parameter 𝜃𝜃: 234 
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𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟(𝑡𝑡) =
1

1 + 𝜃𝜃
+ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)

𝜃𝜃
1 + 𝜃𝜃

 (1) 

where 𝜃𝜃 governs the ratio of input and effective sample size.  Estimating 𝜃𝜃 using the Dirichlet-235 

multinomial likelihood is therefore a model-based approach to data-weighting, and data-weighting 236 

is used to ensure that the weight assigned to age-composition data in a joint likelihood is 237 

appropriate for the degree of match between data and model.  It is typically justified as an important 238 

step in a process to account for model mis-specification, arising from neglecting processes (e.g., 239 

time-varying growth, survival, and fishery selectivity) that affect predicted proportion-at-age but 240 

are not frequently modeled in age-structured assessments (Francis, 2011; Thorson, 2019b).   241 

In this paper, we propose that the estimated value for 𝜃𝜃 (and the resulting ratio of input and 242 

effective sample sizes) can be used to predict effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  resulting from a new 243 

input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ .  When 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≫ 1 using the Dirichlet-multinomial likelihood, we derive 244 

the formula: 245 

𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ (𝑡𝑡) =
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡)(1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡))

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) + �1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)�
 

(2) 

which is a reduced form of the Michaelis-Menten (a.k.a. Beverton-Holt) function 𝑌𝑌 = 𝑎𝑎𝑎𝑎/(𝑏𝑏 +246 

𝑎𝑎)  where 𝑎𝑎 = 𝑏𝑏 = (1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡))  and 𝑎𝑎 = 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) .  See Appendix B for a detailed 247 

derivation; a similar formula could be derived for the Ianelli-McAllister approach for reweighting 248 

composition data, although we do not explore the topic here.  This formula has two noteworthy 249 

properties (see Fig. 2):  (1) 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ (𝑡𝑡) approaches its maximum value 1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) (known 250 

as the “saturation value”) as 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) increases asymptotically,, and (2) 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ (𝑡𝑡) achieves 251 

half of its maximum value when 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡) = 1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)  (known as the “half-saturation 252 

value”).  Future research could explore the variance in model mis-specification (𝜎𝜎�𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑚𝑚
2  in 253 



13 

 

Appendix B) resulting from imprecise estimates of 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟, analogous to efforts for abundance 254 

indices (Kotwicki and Ono, 2019), although we do not do so here. 255 

We conduct a simulation experiment to explore the performance of this predicted relationship 256 

(see Fig. 3 for visualization).  This experiment involves an operating model (OM) that simulates 257 

age-structured population dynamics given a single fishery, as well as an estimation model that is 258 

used to predict changes in effective sample size resulting from an increase in input sample size.  259 

The operating model simulates population dynamics over twenty years for a fish population 260 

loosely based on red snapper (Lutjanus campechanus), tracking abundance-at-age for age-0 261 

through age-20 as it is exploited by a developing fishery.  The OM generates simulated data for a 262 

fishery-independent survey, fishery catch, as well as fishery age-composition samples with input 263 

sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .  In particular, the OM simulates a fishery that has age-and-year specific 264 

selectivity (𝑆𝑆𝑟𝑟,𝑖𝑖): 265 

𝑆𝑆𝑟𝑟,𝑖𝑖 = 𝑆𝑆𝑟𝑟exp (𝜀𝜀𝑟𝑟,𝑖𝑖) (3) 

where 𝑆𝑆𝑟𝑟  represents logistic selectivity-at-age and 𝜀𝜀𝑟𝑟,𝑖𝑖  additional variation in selectivity-at-age 266 

which follows an autoregressive process across both years and ages (Xu et al., 2019a).  By contrast, 267 

the estimation model (EM) assumes that fishery selectivity follows a logistic selectivity-at-age 268 

function; see Appendix C for more details.  The EM therefore has mis-specified selectivity-at-age, 269 

and it also specifies that fishery age-composition data follow the Dirichlet-multinomial likelihood 270 

(Thorson et al., 2017; Thorson, 2019b).  It therefore responds to mis-specified selectivity by 271 

typically estimating that 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 < 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, where the degree of downweighting is a measure of 272 

model mis-specification.  The simulation-experiment is conducted using R package CCSRA 273 

release number 1.2.0 (Thorson and Cope, 2015).  We do not include the effect of ageing errors 274 
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although we hypothesize that ageing error will have little effect (besides decreasing the precision 275 

of resulting stock-assessment estimates) as long as the magnitude of this error is estimated (e.g., 276 

Punt et al., 2008) and appropriately included in the assessment model.   277 

We specifically run one hundred replicates for each of three simulation scenarios that differ 278 

in the amount of fishery age-composition data that are available in each year, where 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =279 

{20,50,100}.  These three scenarios use the same simulation seed for each replicate and therefore 280 

each scenario has the same population and fishery dynamics in a given replicate; scenarios differ 281 

only in how many age-composition samples are available for a given replicate.  Each replicate 282 

therefore specifies an input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and estimates Dirichlet-multinomial parameter 𝜃𝜃; 283 

we apply Eq. 2 for each replicate to predict the effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  that is expected 284 

under alternative input sample sizes 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = {20,50,100}.  We then compare this prediction with 285 

the effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 occurring under that alternative 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for a given replicate 286 

with identical population and fishery dynamics (which we then label 𝑛𝑛�𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟).  For the scenario 287 

when 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 20, we specifically compare predicted 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  under a hypothetical increase to 288 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 50 or 100 with 𝑛𝑛�𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 occurring when 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 or 100.  For the scenario when 289 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50, we similarly compare predicted 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  a hypothetical increase to 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 100 290 

with 𝑛𝑛�𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 occurring when 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 100.  In this way, we can compare predicted 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  291 

with 𝑛𝑛�𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 given three levels of increasing sample size.    292 

Results 293 

We demonstrate results from a simulation experiment evaluating the performance of each of these 294 

two estimators.   295 
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Step 1:  Expanding subsampled records 296 

As expected, a doubling of age reads results in a less-than-doubling of input-sample size (average 297 

increase is 54%, see black histogram in Fig. 4).  This less-than-linear increase occurs because some 298 

proportion of variance arises due to variability in age-composition among tows, and this portion 299 

of variance cannot be reduced by sampling more ages for a fixed set of tows.  However, the 300 

bootstrap approach underestimates the increase in input sample size (average estimate is 21% 301 

increase).  Therefore, the true change in input sample size (54% increase) falls between the 302 

bootstrap estimator (21% increase) and linear estimator (100% increase).  Both the bootstrap 303 

approach and the true increase in input sample size have substantial variance among simulation 304 

replicates (see width of histograms in Fig. 4).   305 

Step 2:  Weighting age/length composition data given model mis-specification 306 

We next use an age-structured population model that includes time-and-age varying selectivity as 307 

operating model for a simulation experiment exploring our analytic estimator for the sensitivity of 308 

effective sample size on changes in input sample size.  Changes in selectivity in the operating 309 

model are not modeled in the estimation model, and this model mis-specification results in greater 310 

error between predicted and observed age-composition data than is expected given the input 311 

sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ; this in turn results in downweighting of age-composition data (such that 312 

𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 < 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖).  Our simulation experiment shows that we can accurately predict changes in 313 

effective sample size resulting from increases in input-sample size (Fig. 5).  Predicting the impact 314 

of a 400% increase in input sample size (i.e., from 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 20 to 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 100) generates the 315 

most variable predictions of 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 (Fig. 5, left column 2nd row), while predicting a 150% or 316 
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100% increase results in more precise predictions.  In all three scenarios, the predicted 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  317 

is an unbiased predictor for 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 (average log-error between -0.01 and 0.02). 318 

Discussion 319 

We have provided two new estimators that collectively predict the impact of changing age-reading 320 

effort on the amount of information used by stock assessments, as measured by the effective 321 

sample size. Although past studies have developed analytic (i.e., closed-form) formulae to predict 322 

changes in information resulting changes in the design for collecting age-composition data (e.g., 323 

Lai, 1987), these did not account for the impact of assessment model mis-specification and 324 

resulting effects of data weighting.  Importantly, our approach splits this analysis into two separate 325 

algorithms; these algorithms could be updated periodically by separate research teams, which helps 326 

to spread the work (and resulting buy-in) within a given research organization. Both steps are also 327 

closely conditioned upon the specific circumstances for a given stock, either in terms of the degree 328 

of intra-haul and inter-haul correlation and variance in catch rates (Step 1) or the degree of 329 

assessment model mis-specification and resulting data weights (Step 2).   330 

As one worked example for these analyses, we return to the most recent assessment for Canary 331 

rockfish off the US West Coast (Thorson and Wetzel, 2015).  We do not have a current 332 

implementation of the software to expand length-samples to expanded length-composition data, 333 

but treating average values from Stewart and Hamel (2014) as a marginal predicted change, we 334 

predict that a 10% increase in 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 would require at least 56 additional length samples per year.  335 

Then, using the Ianelli-McAllister estimate of 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 = 75.4 given 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 79 for length 336 

samples in the bottom trawl survey for Canary rockfish (Thorson and Wetzel, 2015) and assuming 337 

that the Dirichlet-multinomial likelihood would give a similar value (see Thorson, 2019b) such 338 
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that log(𝜃𝜃) ≈ logit �75.4
79
� = 3.04, we predict that a 10% increase in input sample size (from 339 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 79 to 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 86.9) would result in a 9.5% increase in effective sample size (from 340 

𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 = 75.4  to 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ = 82.6 ).  We recommend future research to validation this 341 

prediction that 56 additional length samples would result in most in a 9.5% increase in effective 342 

sample size. 343 

By conditioning upon specifics for a given species, this approach allows analysts to compare 344 

results among species with different circumstances in their survey data and stock assessment; 345 

comparison among species is necessary for any subsequent optimization of survey effort across 346 

those same species.  In particular, comparison across species could be combined with information 347 

regarding the cost of field sampling and otolith reads as well as economic benefits of improved 348 

information to provide a “net value” for proposed changes in age-reading effort. Before embarking 349 

on this larger process, however, we recommend that analysts apply both steps to a few carefully 350 

selected species (e.g., representative rockfishes vs. flatfishes) to explore whether any initial 351 

patterns emerge.  For example, Stewart and Hamel (2014) showed that thornyheads (Sebastolobus 352 

spp.) have substantial variation in age within each trawl sample, such that reading the age of 353 

multiple individuals for each trawl tow results in a larger input sample size than for rockfishes or 354 

flatfishes.  Generalities such as this could then be used to justify future “rules of thumb” to 355 

qualitatively guide resource decisions, without requiring resources to regularly update results (e.g., 356 

Gerritsen and McGrath, 2007).   357 

The formula predicting effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  resulting from a change in input 358 

sample size (Eq. 2) depends upon an accurate estimate of input sample size when estimating the 359 

Dirichlet-multinomial weighting parameter 𝜃𝜃 within the assessment model.  To see this, note that 360 
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the ratio of effective and input sample size is a logistic function of log(𝜃𝜃) in Eq. 1, while the 361 

predicted effective sample size is a Michaelis-Menten function of 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  This implies that mis-362 

specifying 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 during assessment-model fitting will result in a compensatory change in 𝜃𝜃, and 363 

this will in turn result in a biased estimate of 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ .  Therefore, applying the theory developed 364 

here will require accurate estimates of 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.  There is a growing literature regarding approaches 365 

to estimating 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  using the bootstrap (Stewart and Hamel, 2014), simple design-based 366 

estimators (Thorson, 2014), or spatio-temporal methods (Thorson and Haltuch, 2018).  Increased 367 

efforts to use these methods to estimate 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in real-world assessment models is needed, such 368 

that resulting estimates of data weighting (i.e., 𝜃𝜃) can then be used to predict 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  given 369 

changes in ageing effort.  Similarly, comparing the estimation covariance for abundance indices-370 

at-age and the covariance in residual fits to an assessment in a multivariate-normal likelihood (e.g., 371 

Fig. 1 and 3 for autumn herring in the Q1 ICES survey from Berg and Nielsen (2016)) could 372 

presumably provide analogous information regarding the magnitude of additional covariance 373 

occurring given model specification;  this information could then be used to predict how 374 

assessment model fit would likely change with changing precision for abundance indices.   375 

This study investigates only the case where the assessment model estimates selectivity that is 376 

constant over time.  Xu et al. (2019b) showed that the Dirichlet-multinomial approach performs 377 

well in estimating effective sample size regardless of whether the variation in selectivity is 378 

estimated in the assessment model. Accounting for the variation in selectivity can result in more 379 

precise estimations of both spawning biomass and fishing mortality if composition data have large 380 

sample sizes (Xu et al., 2019a). More importantly, estimating time-varying selectivity will reduce 381 

the magnitude of model mis-specification, which means that the ratio of effective to input sample 382 



19 

 

size (i.e., 𝜃𝜃 1 + 𝜃𝜃⁄ ) will also increase.  This in turn increases the expected benefit of increasing 383 

input sample size.  Therefore, increasing age reads will typically allow for improved model 384 

specification (i.e., estimating additional time-varying processes), which in turn will increase the 385 

value of further age-reads.  The virtuous cycle between improved model specification and 386 

increasing value for age-reading effort is one reason why it is important to periodically re-evaluate 387 

age-reading expenditures for each stock relative to other survey-design and management priorities.  388 

Alternatively, other forms of model mis-specification may not be adequately represented via 389 

down-weighting of compositional data (Punt, 2017), and we recommend further research regarding 390 

best-practices for weighting data (and resulting impacts on age-reading effort) from alternative 391 

forms of model mis-specification.   392 

We have only addressed Steps 1-2 (age reads → input sample size → effective sample size), 393 

and not Steps 3-4 (effective sample size →  assessment model variance →  management 394 

performance).  Predicting changes in assessment-model variance from changes in effective sample 395 

size will depend upon the assessment-model output evaluated.  However, we hypothesize that the 396 

estimate of the variance of recruitment will be closely linked to changing effective sample size, 397 

and that an analytic formula could be developed.  We furthermore hypothesize that such a formula 398 

should include several factors including: (1) the evenness of proportion-at-age across different 399 

age-classes, as affected by maturity and mortality-at-age, as well as recruitment variance; and (2) 400 

the degree to which information is provided by age-composition data versus other data sets (as 401 

measured; e.g., using likelihood profiles). However, we leave the elaboration of this technique as 402 

a topic for future research.  In the meantime, we envision that assessment scientists will generally 403 

have some familiarity with the magnitude of changes that occur when changing the effective 404 

sample size for age-composition data.  The impact of changing assessment-model variance of 405 
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management performance has been widely studied, including elements involving autocorrelated 406 

errors (Wiedenmann et al., 2015), delays in management actions (Shertzer and Prager, 2007), 407 

alternative approaches to rebuilding plans (Wetzel and Punt, 2016), and many other topics. We 408 

hope that our study sparks a similar interest in exploring steps 1-3 that we outline here.   409 

This study is a key step in demonstrating how changes in the sampling intensity for 410 

compositional data influence the effective sample size for these data in stock assessment models. 411 

Understanding this relationship is essential in a highly variable funding environment that often 412 

drives reductions in total survey costs. The impact of reduced age-reading effort will not be the 413 

same across stocks, and the impact on resulting management advice from stock assessments should 414 

be used to guide this process. Open-loop simulation experiments estimating bias and precision in 415 

key assessment model parameters and management quantities would be a beneficial extension to 416 

this work. A logical step forward would be to develop a spatial operating model with flexibility to 417 

model ontogenetic movement or spatial distribution shifts linked to environmental covariates, 418 

which would of great interest given expected changes in the North Pacific and elsewhere (Morley 419 

et al., 2018). The combination of a complex operating model and a simple estimation model would 420 

allow for a thorough examination of how the interaction of model misspecification and the 421 

estimation of input and effective sample size influence assessment outcomes. This open-loop 422 

simulation approach would help to determine a threshold sample size required to provide adequate 423 

management advice for multiple species and would also identify the trade-off in required sampling 424 

effort among species.  425 

Alternatively, future research could apply a closed-loop simulation experiment (i.e., 426 

management strategy evaluation, MSE) to identify the trade-offs over a range of management 427 

objectives. The MSE approach evaluates a management strategy (a.k.a. procedure) that involves 428 
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the entire pipeline from data collection, stock assessment model fitting, management advice and 429 

decision making, and implementation of the management advice (Sainsbury et al., 2000; Punt et 430 

al., 2016). The evaluation of this integrated pipeline is then conducted by simulating each step; 431 

this simulation is used to measure the expected management performance for a across a range of 432 

alternative circumstances. This process is a generic simulation-based approach to decision theory, 433 

and therefore could be used to evaluate the same questions explored here; that is, the impact of 434 

inter- and intra-haul correlations and variance, combined with model mis-specification, on the 435 

value of additional age-reads.  Importantly, this closed-loop simulation would be useful to 436 

determine consequences when iteratively applying a decision-rule based on these analyses to 437 

continually update sample sizes for a given species (e.g., as shown in Fig. 6 when moving several 438 

times through the process in each column).  Importantly, some decision-rules could result in 439 

poorly-sampled species having low value for additional samples (due to poor assessment model 440 

fits and high 𝜃𝜃  estimates), thus resulting in a lower priority for age-sampling effort and a 441 

downward spiral in resource allocation for that species.  Presumably this issue could be corrected 442 

by developing optimal “decision-rules” for using results of an analysis to update funding decisions.  443 

We therefore recommend further research for how these two estimators are used to optimize 444 

funding decisions.   445 

We conclude by noting that a management strategy evaluation (or any other integrated process 446 

for simulating population, sampling, and assessment-model components) is difficult to use when 447 

optimizing resource allocations across stocks.  In particular, it is difficult to develop a simulation 448 

model that closely matches the sampling (e.g., within- and among-haul variability), population 449 

dynamics (e.g., counterfactual recruitment dynamics) and assessment-model (e.g., degree of model 450 

mis-specification) characteristics for each individual stock.  Our workflow, by contrast, uses the 451 
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raw sampling data (Step 1) and fitted stock-assessment model (Step 2) to automatically generate 452 

an operating model.  We therefore advocate that science agencies should develop a suite of tools 453 

for evaluating the impact of changes in field-sampling effort, ranging from simple (cost efficient) 454 

to complex (expensive) following the schematic shown in Fig. 6.  In particular, we hope that this 455 

suite involves analytical approaches (e.g., Step 2), as well as bootstrap methods (e.g., Step 1) that 456 

can be uniformly applied across species to explore trade-offs across species.   457 
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Table 1:  Description of analyses that collectively assess the likely impact of changes in the number of otoliths read 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 on the 561 

variance of stock-assessment model output 𝑉𝑉𝑎𝑎𝑉𝑉(𝑎𝑎).  This involves a four-stage process: (Step 1) the impact of changing 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 on the 562 

input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 using a bootstrap experiment; (Step 2) the impact of changing 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 on the effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 of 563 

compositional data when tuned in an assessment model; (Step 3) the impact of changing 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 on 𝑉𝑉𝑎𝑎𝑉𝑉(𝑎𝑎); and (Step 4) the impact 564 

of changing assessment-model variance on management performance.   565 

Analysis 

number 

Input Output Approach to measure 

effect 

Data needed Responsibility 

for updating  

analysis 

Processes affecting 

output 

1 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟∗  𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  

Non-parametric bootstrap 

of Hamel-Stewart (2014) 

sample-size estimator 

• Records for 

sampling data 

• Age/length 

subsampling 

measurements 

Survey team 

• Variance in 

age/length 

composition 

within and among 

samples 
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• Variance in 

biomass/abundanc

e among samples 

2 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  

Analytic formula: 

𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ =
𝛽𝛽𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗

𝛽𝛽 + 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  

where  

𝛽𝛽 = 1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• Stock assessment 

model fitted to 

expanded data, and 

applying Dirichlet-

multinomial 

likelihood 

Survey or 

assessment 

team 

• Magnitude of 

error in in fit to 

expanded 

composition data 

(i.e., due to 

unmodeled 

variation in 

growth, 

selectivity, 

mortality, etc.) 
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3 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  𝑉𝑉𝑎𝑎𝑉𝑉∗(𝑎𝑎) 
Parametric bootstrap of 

assessment model  

• Stock assessment 

model with 

bootstrap simulator 

Assessment 

team 

• Which assessment 

model output is 

under 

consideration 

• Other sources of 

data available 

within the model 

4 𝑉𝑉𝑎𝑎𝑉𝑉∗(𝑎𝑎) 
Management 

performance 

Management strategy 

evaluation 

• Variance and 

autocorrelation in 

assessment errors 

Research 

community 

• Delays in 

management 

(Shertzer and 

Prager, 2007) 

• Autocorrelation in 

errors 

(Wiedenmann et 

al., 2015) 
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• Structure of 

management plan 

(Wetzel and Punt, 

2016) 

• Economic values 

(Hutniczak et al., 

2019) 

  566 

 567 
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Fig. 1:  Graphical depiction of simulation experiment testing performance of bootstrap estimator 568 

in Analysis #1 (i.e., predicting the likely consequence of changing ageing effort on resulting 569 

input sample size).  Black circles refer to data sets, whether used to parameterize an operating 570 

model (“Real-world data”) or arising from the operating model; blue squares refer to models 571 

(both the operating model, and the estimator predicting changes in input sample size); red 572 

squares refer to estimators that are used to evaluate performance, i.e., by comparing predicted 573 

input sample size (𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ ) with the input sample size arising from a changed number of age reads 574 

(𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖).   575 

 576 

 577 
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Fig. 2:  Illustration of the theoretical  relationship between a new input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  and the 578 

resulting effective sample size, 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  (thick solid line), for a hypothetical scenario in which 579 

the Dirichlet-multinomial parameter 𝜃𝜃 = 0.8 and the original input sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 125 580 

(resulting in 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 = 56.1 , as indicated by the black circle).  In this circumstance, the 581 

asymptotic maximum value for lim
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
∗ →∞

�𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ � = 1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 101 (dashed line) and the 582 

Michaelis-Menten half-saturation value is 1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 101, such that 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  achieves half 583 

of its maximum possible value when 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 1 + 𝜃𝜃𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (shown by the arrows connecting 584 

𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ = 50.5 to 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 101). 585 

 586 

  587 
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Fig. 3:  Graphical depiction of simulation experiment testing performance of bootstrap estimator 588 

in Analysis #2 (i.e., predicting the likely consequence of changing input sample size on effective 589 

sample size).  See Fig. 1 caption for color-code conventions.  Performance is evaluated by 590 

comparing predicted effective sample size (𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗ ) with the effective sample size occurring 591 

with a large input sample size (𝑛𝑛�𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟)  592 

 593 

  594 
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Fig. 4:  Comparison of the ratio of input sample size given 40 otoliths read per tow and 20 595 

otoliths read per tow (𝑛𝑛�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)/𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡), grey histogram), and the ratio of predicted sample 596 

size using a bootstrap estimator based on an input sample size of 20 otoliths per tow 597 

(𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑡𝑡)/𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡), red histogram) when aggregating results across 10 years and 30 simulation 598 

replicates; a  linear estimator would estimate a ratio of 2.0 for all samples.   599 

 600 

  601 
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Fig. 5:  Results from a simulation experiment evaluating the performance of the analytic estimator 602 

for changes in effective sample size arising from a change in input-sample size (Eq. 2), 603 

implementing 100 simulation replicates arising from three treatments. We show predictions given 604 

original sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 20 and predicting the effect of new sample size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 50 (top 605 

row), given 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 20 and predicting 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 100 (middle row), or given 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50 and 606 

predicting 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 100 (bottom row).  The first column shows the predictions, where a line 607 

connects the effective sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 (y-axis) estimated using the original input sample 608 

𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (x-axis) with the predicted effect sample size 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  (y-axis) for the new input sample 609 

size 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (x-axis) in each simulation replicate;  these lines are generally below the one-to-one 610 

line (dashed line) due to the predicted nonlinear relationship.  The middle row shows the true 611 

values, where a line connects original 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟  and 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  with new 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗  and resulting 612 

𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟.  The right column compares the predicted 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  (x-axis) and resulting 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 613 

(y-axis).  A well-performing estimator will have predictions 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟∗  and resulting 𝑛𝑛𝑟𝑟𝑒𝑒𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 614 

centered around the one-to-one line; we also list the average error (in log-space) at the bottom-615 

right corner of panels in the right column.   616 
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Fig. 6 – Schematic showing proposed workflow for periodic update of sampling effort allocated 619 

to multiple species. Step 1 (sensitivity of input on nominal sample size) and Step 2 (sensitivity of 620 

effective on input sample size) could each be updated every ∆𝑇𝑇 years to periodically update the 621 

design for age reading effort. 622 
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